172 research outputs found

    Wetting of prototypical one- and two-dimensional systems: Thermodynamics and density functional theory.

    Get PDF
    Consider a two-dimensional capped capillary pore formed by capping two parallel planar walls with a third wall orthogonal to the two planar walls. This system reduces to a slit pore sufficiently far from the capping wall and to a single planar wall when the side walls are far apart. Not surprisingly, wetting of capped capillaries is related to wetting of slit pores and planar walls. For example, the wetting temperature of the capped capillary provides the boundary between first-order and continuous transitions to condensation. We present a numerical investigation of adsorption in capped capillaries of mesoscopic widths based on density functional theory. The fluid-fluid and fluid-substrate interactions are given by the pairwise Lennard-Jones potential. We also perform a parametric study of wetting in capped capillaries by a liquid phase by varying the applied chemical potential, temperature, and pore width. This allows us to construct surface phase diagrams and investigate the complicated interplay of wetting mechanisms specific to each system, in particular, the dependence of capillary wetting temperature on the pore width

    The asymptotics of the moving contact line: cracking an old nut

    Get PDF
    This article has been published in a revised form in Journal of Fluid Mechanics https://doi.org/10.1017/jfm.2014.702. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press.For contact line motion where the full Stokes flow equations hold, full matched asymptotic solutions using slip models have been obtained for droplet spreading and more general geometries. These solutions to the singular perturbation problem in the slip length, however, all involve matching through an intermediate region that is taken to be separate from the outer-inner regions. Here, we show that the intermediate region is in fact an overlap region representing extensions of both the outer and the inner region, allowing direct matching to proceed. In particular, we investigate in detail how a previously seen result of the matching of the cubes of the free surface slope is justified in the lubrication setting. We also extend this two-region direct matching to the more general Stokes flow case, offering a new perspective on the asymptotics of the moving contact line problem

    Recent advances in the evolution of interfaces: thermodynamics, upscaling, and universality

    Full text link
    We consider the evolution of interfaces in binary mixtures permeating strongly heterogeneous systems such as porous media. To this end, we first review available thermodynamic formulations for binary mixtures based on \emph{general reversible-irreversible couplings} and the associated mathematical attempts to formulate a \emph{non-equilibrium variational principle} in which these non-equilibrium couplings can be identified as minimizers. Based on this, we investigate two microscopic binary mixture formulations fully resolving heterogeneous/perforated domains: (a) a flux-driven immiscible fluid formulation without fluid flow; (b) a momentum-driven formulation for quasi-static and incompressible velocity fields. In both cases we state two novel, reliably upscaled equations for binary mixtures/multiphase fluids in strongly heterogeneous systems by systematically taking thermodynamic features such as free energies into account as well as the system's heterogeneity defined on the microscale such as geometry and materials (e.g. wetting properties). In the context of (a), we unravel a \emph{universality} with respect to the coarsening rate due to its independence of the system's heterogeneity, i.e. the well-known O(t1/3){\cal O}(t^{1/3})-behaviour for homogeneous systems holds also for perforated domains. Finally, the versatility of phase field equations and their \emph{thermodynamic foundation} relying on free energies, make the collected recent developments here highly promising for scientific, engineering and industrial applications for which we provide an example for lithium batteries

    Density functional study of condensation in capped capillaries.

    Get PDF
    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T⩽TcwT\leqslant {{T}_{\text{cw}}} ) or continuous (at T>TcwT\gt {{T}_{\text{cw}}} ), where Tcw{{T}_{\text{cw}}} is the capillary wetting temperature. At T>TcwT \gt {{T}_{\text{cw}}} , the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies
    • …
    corecore